
Software Engineering

and Architecture

Refactoring and Integration Testing

The power of automated tests

Two product variants

• Alphatown and Betatown

– Four models to handle this

• compositional proposal has nice

properties...

• How do we introduce it?

CS @ AU Henrik Bærbak Christensen 2

Change by addition

• I state:

• Change by addition, not modification
• because

– addition

• little to test, little to review

• little chance of introducing ripple-effects

– modification

• more to test, more to review

• high risk of ripples leading to side effects (bugs!)

CS @ AU Henrik Bærbak Christensen 3

The Problem Statement

• But I have to modify the pay station implementation in
order to prepare it for the new compositional design that
uses a Strategy pattern

•  Change by modification

• Problem:
– How to reliably modify PayStationImpl?

– How can I stay confident that I do not accidentally introduce any
defects?

CS @ AU Henrik Bærbak Christensen 4

Take Small Steps

• I will stay focused and take small steps!

• I have two tasks

– 1) Refactor the current implementation to introduce the Strategy

and make AlphaTown work with new design

– 2) Add a new strategy to handle Betatown requirements

• ... and I will do it in that order – small steps!

CS @ AU Henrik Bærbak Christensen 5

Refactoring

• Definition:

• Refactoring is the process of changing a software system

in such a way that is does not alter the external behavior

of the code yet improves its internal structure.
• Fowler, 1999

CS @ AU Henrik Bærbak Christensen 6

Iteration 1

Refactoring step

The Rhythm

CS @ AU Henrik Bærbak Christensen 8

• Refactoring and the rhythm

• Same spirit, but step 1+2+3 becomes “refactor”

1+2+3: Refactor

A faster way than in the FRS book

Use the tools in your IDE

CS @ AU Henrik Bærbak Christensen 9

Simply type what you want

• And ask the IDE (Alt-Enter) to suggest what to do,

– And then just tell it what you want and it will fill in the template

CS @ AU Henrik Bærbak Christensen 10

CS@AU Henrik Bærbak Christensen 11

The 7 Inch Nail…

• To repeat

CS@AU Henrik Bærbak Christensen 12

Introduce design changes in two ‘small steps’:

1) Use existing test cases to refactor code so it has new design
Do not change existing behavior!

2) Only then do you start test-driving the new feature(s) into your
codebase.

Discussion

CS @ AU Henrik Bærbak Christensen 13

Why TDD?

• Traditionally, developers see tests as

– boring

– time consuming

• Why? Because of the stakeholders that benefit from tests

are not the developers

– customers: ensure they get right product ☺

– management: measure developer productivity ☺

– test department: job security ☺

– developers: seemingly no benefit at all 

CS @ AU Henrik Bærbak Christensen 14

If it ain’t broke...

• If it ain’t broke, don’t fix it

• …is the old saying of fear-driven programming

• Developers and programmers do not dare doing drastic

design and architecture changes in fear of odd side-

effects.

CS @ AU Henrik Bærbak Christensen 15

Test Ownership

• Refactoring makes developers want to have ownership of

the tests:

• Automatic tests is the developers’ means to be

courageous and to dare modify existing production

code.

• Michael Feathers:

– Software Vise: Fixating the behavior

CS @ AU Henrik Bærbak Christensen 16

…But

• The brittleness of the test cases hinges on only using the

interfaces to the widest possible extend!

• ☺ assertThat(game.getCardInHand(…), is….)

•  assertThat(game.getInternalDataStruture()

.getAsArray()[47], is …)

• Ensure your test cases does not rely on implementation

details…

CS@AU Henrik Bærbak Christensen 17

When redesigning....

• TDD often seems like a nuisance to students and

developers until the first time they realize that they dare

do things they previously never dreamed of!

• The first time a major refactoring is required – the light

bulb turns on ☺

CS @ AU Henrik Bærbak Christensen 18

A Side Note

Tests allow ‘hypotheses’ to be verified

quickly…

An Example

• 2023 discussion forum question

– ‘Why that Status.NOT_ALLOWED_TO_ACT_ON_BEHALF…?’

• That is – what purpose does that particular value serve?

• Good question?

– The history of that is, well history! Code evolves, ideas are tried

out, sometimes they are essential, sometimes not, so is it vital

that this status value is kept? Or, can I delete it?

• How to I find the answer to that?

– By using my tests! The software Vise…

CS@AU Henrik Bærbak Christensen 20

An Example

• So – I use IntelliJ to find uses of that value. And find a

couple of places, one example being

• The ‘what if’ scenario

– Use your tests to see what happens if…

• If I replace it by NOT_OWNER???

• Why can this ‘what if’ test provide value?

CS@AU Henrik Bærbak Christensen 21

What If

• The point here is:

– If 1 out of 95 test cases break, then…

– If 92 out of 95 test cases break, then …

• Yeah – then what?

• The “blast radius” is estimated

– Will this have small or large implications?

CS@AU Henrik Bærbak Christensen 22

What If game

• So I make that change (temporarily) to assess

CS@AU Henrik Bærbak Christensen 23

Run all tests…
… to see only a single

fail!

Conclusion

• For the domain code (game code), it seems that

particular Status value does not provide any value

beyond what NOT_OWNER does.

– It can probably be removed, the ‘blast area’ is small

– Removed in the code base for the E24 instance

• As UI operations are manually tested, I do still need to

verify that aspects

– Issue: Game domain works, but the UI fails…

CS@AU Henrik Bærbak Christensen 24

Iteration 2

Betatown Rate Policy

Triangulation at Algorithm Level

• Introducing the real BetaTown rate

policy is a nice example of using

Triangulation

– Iteration 2:

• Add test case for first hour => production

code

– Iteration 3: Add test case for second hour

• Add just enough complexity to the rate

policy algorithm

– Iteration 4: Add test case for third (and

following) hour

• Add just enough more complexity

CS @ AU Henrik Bærbak Christensen 26

Iteration 4

Iteration 3

Iteration 2

Uhum – the Details?

CS@AU Henrik Bærbak Christensen 27

Iteration 5

Unit and Integration Testing

Unit Testing

• I can actually test the new rate policy without using the

pay station at all !

CS @ AU Henrik Bærbak Christensen 29

Advantages

• The unit testing of the progressive rate strategy is much

simpler than the corresponding test case, using the

strategy integrated into the pay station.

CS @ AU Henrik Bærbak Christensen 30

Testing Types

• Now

– I test the ProgressiveRateStrategy in isolation of the pay station

(Unit testing)

– The pay station is tested integrated with the LinearRateStrategy

(Integration testing)

• Thus the two rate strategies are tested by two

approaches

– In isolation (unit)

– As part of another unit (integration)

• And

– The actual Betatown pay station is never tested!

CS @ AU Henrik Bærbak Christensen 31

Visually

CS@AU Henrik Bærbak Christensen 32

AlphaTown - JUnit PayStation

LinearRateStrategy

BetaTown - JUnit

PayStation

ProgressiveRate
Strategy

Definitions

• Experience tells us that testing the parts does not mean

that the whole is tested!

– Often defects are caused by interactions between units or wrong

configuration of units!

CS @ AU Henrik Bærbak Christensen 33

Algorithms –
Business Logic

Collaboration between
units/modules/services

User Expectations

Exercise

• Tricky – but

– Give me a concrete example where having tested all the units in

isolation does not guaranty that the system works correctly!

– Example: The Mars Climate Orbiter...

CS @ AU Henrik Bærbak Christensen 34

Integration Testing the Pay Station

• I must add a testcase that validate that the AlphaTown

and as well as BetaTown products are correctly

configured!

• Just a single test that they integrate!

– Not repeating all the tests!

CS @ AU Henrik Bærbak Christensen 35

Beta - JUnit
PayStation

ProgressiveRate
Strategy

Important Note!

• Integration testing is not system testing!

• You typically integration test that A works with B, while

using doubles for C, D, and E units!

– We will return to what ‘doubles’ are next week ☺

• System testing is testing the full system: A working with

real B, real C, real D, and real E units.

– Focus: Does system do what it promised to do?

CS@AU Henrik Bærbak Christensen 36

More advanced integration testing

• The pay station case’s integration is pretty simple as it is

all a single process application.

• SkyCave case

– Automated integration tests use special libraries to start a

MongoDB database and a external REST server, in order to test

the main server’s proper interaction with these.

– Afterwards the database + REST server is stopped and wiped for

contents

– Integration tests are often slow to execute

• Which is why they are often performed by a special build server…

CS @ AU Henrik Bærbak Christensen 37

And system testing

• Karibu case

– (Manual) system test requires

• Two servers running clustered RabbitMQ

• Two servers running Karibu Daemons

• Three servers running replica set Mongo databases

– Test cases include

• Shutting down servers and validate data keeps flowing and

reviewing log messages for proper handling of shut down events...

CS @ AU Henrik Bærbak Christensen 38

Iteration 6: Unit Testing

Pay Station

Separate Testing

• I can actually also apply Evident Test to the testing of the

pay station by introducing a very simple rate policy

CS @ AU Henrik Bærbak Christensen 40

Lambda
expression

for:
one cent =
one minute

Visually

• Now unit testing PayStation

– As the RateStrategy is ‘doubled’ by a simpler implementation

• Simpler => No defects there, so any defect must stem from coding

errors in the PayStation…

CS@AU Henrik Bærbak Christensen 41

PaySt. - JUnit PayStation

LinearRateStrategy

One2OneRate
Strategy

Resulting test cases

• Using this rate policy makes reading pay station test

cases much easier!

CS @ AU Henrik Bærbak Christensen 42

Outlook

Continuous Delivery and Deployment

Agile on the Minute Scale

• Many software houses release and deploy software on

the minute and hour scale

– Google, netflix, uber, amazon, microsoft, …

• How

– Comprehensive unit test suites

– Comprehensive integration tests

– Automated ‘build pipelines’ running on dedicated build servers

• The pipeline will

– Run all tests, package the system into a virtual machine and release it

– Potentially deploy the release and put it into production

CS@AU Henrik Bærbak Christensen 44

Example: Bitbucket Pipelines

CS@AU Henrik Bærbak Christensen 45

AU GitLab supports it

• You can enable it by adding a special ‘yml’ file…

CS@AU Henrik Bærbak Christensen 46

Conclusion

Advice

• Do not code in anticipation of need, code when need

arise...

• Automatic tests allow you to react when need arise

– because you dare refactor your current architecture...

CS @ AU Henrik Bærbak Christensen 48

Refactoring

• When ’architecture refactoring’ need arise then

• A) Use the old functional tests to refactor the architecture

without adding new or changing existing behavior

• B) When everything is green again then proceed to

introduce new/modified behavior

• C) Review again to see if there is any dead code lying

around or other refactorings to do.

CS @ AU Henrik Bærbak Christensen 49

Discussion

• These refactorings shown here are very local, so the

‘architecture decisions’ are also local.

• However sometimes you need to make larger architectural

changes that invalidate the test cases 

– Changing API or the way units are used

– Ex: Changing persistence from file to RDB based

• What to do in this case?

– Define a path (even a long one) of small tasks that keep tests

running! Even if it means making code that later must be removed

CS @ AU Henrik Bærbak Christensen 50

