/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Refactoring and Integration Testing
The power of automated tests

/v Two product variants

AARHUS UNIVERSITET
« Alphatown and Betatown

— Four models to handle this

« compositional proposal has nice
properties...

« How do we introduce it?

CS @ AU Henrik Beerbak Christensen 2

/v Change by addition

AARHUS UNIVERSITET
| state:

 Change by , hot modification

* because
— addition
« little to test, little to review
« little chance of introducing ripple-effects
— modification
* more to test, more to review
 high risk of ripples leading to side effects (bugs!)

CS @ AU Henrik Baerbak Christensen 3

/v The Problem Statement

AARHUS UNIVERSITET

« But | have to modify the pay station implementation in
order to prepare it for the new compositional design that
uses a Strategy pattern

« ® Change by modification

* Problem:
— How to reliably modify PayStationimpl?

— How can | stay confident that | do not accidentally introduce any
defects?

/v Take Small Steps

AARHUS UNIVERSITET
« | will stay focused and take small steps!

* | have two tasks

CS @ AU Henrik Beerbak Christensen 5

/v Refactoring

AARHUS UNIVERSITET

% refactor Alphatown to use a compositional design
** handle rate structure tor Betatown

 Definition:

CS @ AU Henrik Beerbak Christensen 6

/v

AARHUS UNIVERSITET

lteration 1

Refactoring step

/v The Rhythm

AARHUS UNIVERSITET

* Refactoring and the rhythm
The TDD Rhythm:

1. Quickly add a test
1+2+3: Refactor
. Run all tests and see the new one fail

Make a little change

Run all tests and see them all succeed

SN

Refactor to remove duplicatinn

« Same spirit, but step 1+2+3 becomes “refactor”

CS @ AU Henrik Baerbak Christensen 8

/v

AARHUS UNIVERSITET

A faster way than in the FRS book

Use the tools in your IDE

CS @ AU Henrik Baerbak Christensen

Y Simply type what you want

AARHUS UNIVERSITET

public void addPayment(int coinValue) throws IllegalCoinException {
switch (coinValue) {
case 5: case 10: case 25: break:
default: throw new IllegalCoinException("Invalid coin, only 5, 10, 25 allowed");
}

insertedSoFar += coinValue:

B timeBought = rateStrategy.calculateTime(insertedSoFar);
} @ Create local variable 'rateStrategy’
Create field 'rateStrategy’ in 'StandardPayStation'
5 usages Henrik Baerbak chr @ Create parameter 'rateStrateqgy'
@0verride @ Rename reference

« And ask the IDE (Alt-Enter) to suggest what to do,
— And then just tell it what you want and it will fill in the template

CS @ AU Henrik Baerbak Christensen 10

/v

AARHUS UNIVERSITET

public class StandardPayStation implements PayStation {
3 usages
private int insertedSoFar;
4 usages
private int timeBought;
1usage
private RateStrategy| rateStrategy;

@1usage
private RateStrategy rateStrateqgy;

@ Create class 'RateStrateqgy’

9 usages Henrik B Create interface 'RateStrategy’
@0verride @ Create enum 'RateStrategy’

public void addPayment(int coinValue) throws IllegalCoinException {
switch (coinValue) {
case 5: case 10: case 25: break;
default: throw new IllegalCoinException("Invalid coin, only 5, 10,
}
insertedSoFar += coinValue;
e timeBought = rateStrategy.calculateTime(insertedSoFar);

} Create method "calculateTime' in 'RateStrategy’
© Rename reference

CS@AU Henrik Baerbak Christensen

/v The 7 Inch Nail...

AARHUS UNIVERSITET
* To repeat

Introduce design changes in tWO ‘small steps’:

1) Use existing test cases to refactor code so it has new design
Do not change existing behavior!

2) Only then do you start test-driving the new feature(s) into your
codebase.

Henrik Baerbak Christensen

/v

AARHUS UNIVERSITET

CS @ AU

Discussion

Henrik Baerbak Christensen

13

/v Why TDD?
AARHUS UNIVERSITET
« Traditionally, developers see tests as
— boring
— time consuming

« Why? Because of the stakeholders that benefit from tests
are not the developers
— customers: ensure they get right product ©
— management: measure developer productivity ©
— test department: job security ©
— developers: seemingly no benefit at all &

V4V If It ain’t broke...

AARHUS UNIVERSITET
o Ifitain’t broke, don't fix it
 ...is the old saying of fear-driven programming

* Developers and programmers do not dare doing drastic
design and architecture changes in fear of odd side-
effects.

Key Point: Test cases support refactoring

Refactoring means changing the internal structure of a system without chang-
ing its external behavior. Therefore test cases directly support the task of refac-

toring because when they pass you are confident that the external behavior they
test is unchanged.

CS @ AU Henrik Baerbak Christensen 15

/v Test Ownership

AARHUS UNIVERSITET

« Refactoring makes developers want to have ownership of
the tests:

* Michael Feathers:
— Software Vise: Fixating the behavior

CS @ AU Henrik Beerbak Christensen 16

eV ...But

AARHUS UNIVERSITET

« The Dbrittleness of the test cases hinges on only using the
Interfaces to the widest possible extend!

« © assertThat(game.getCardinHand(...), is....)

« ® assertThat(game.getinternalDataStruture()
.getAsArray()[47], is ...)

CS@AU Henrik Beerbak Christensen 17

/v When redesigning....

AARHUS UNIVERSITET

Key Point: Refactor the design before introducing new features

Introduce the design changes and refactor the system to make all existing lest
suites pass before you begin implementing new features.

« TDD often seems like a nuisance to students and
developers until the first time they realize that they dare
do things they previously never dreamed of!

« The first time a major refactoring is required — the light
bulb turns on ©

(Il

CS @ AU Henrik Baerbak Christensen 18

/v

AARHUS UNIVERSITET

A Side Note

Tests allow ‘hypotheses’ to be verified
quickly...

/v An Example

AARHUS UNIVERSITET

« 2023 discussion forum question
— ‘Why that Status.NOT_ALLOWED TO_ACT _ON_BEHALF...?
« That is — what purpose does that particular value serve?
« (Good question?

— The history of that is, well history! Code evolves, ideas are tried
out, sometimes they are essential, sometimes not, so is it vital
that this status value is kept? Or, can | delete it?

 How to | find the answer to that?
— By using my tests! The software Vise...

/v An Example

AARHUS UNIVERSITET

S0 — | use Intellid to find uses of that value. And find a
couple of places, one example being

spublic Statuws playCard(Player who, Card card) {
if (who != operatingPlayer) return Status.NOT_ALLOWED_TO_ACT_ON_BEHALF_OF_OPPONENT;
Status status = game.playCard(who, card);
return status;

}

« The ‘what if’ scenario

— Use your tests to see what happens if...
» If I replace it by NOT OWNER???

 Why can this ‘what if’ test provide value?

CS@AU Henrik Baerbak Christensen 21

VeV What If

AARHUS UNIVERSITET

« The point here Is:
— If 1 out of 95 test cases break, then...

— If 92 out of 95 test cases break, then ...

* Yeah —then what?

 The “blast radius” is estimated
— Will this have small or large implications?

/v What If game

AARHUS UNIVERSITET
« So | make that change (temporarily) to assess

Henrik Baerbak Christensen

spublic Status playCard(Player who, Card card) {
if (who != operatingPlayer) return Status.NOT_ALLOWED_TO_ACT_ON_BEHALF_OF_OPPONENT;
Status status = game.playCard(who, card);

return status;

public Statws playCard(Player who, C
if (who != operatingPlayer) return Status.HﬂT_GWHEd,

Status status = game.playCard(who, Caror:

return status;

$ gradle clean test Run a” teStS
> Task :ui:compilelava

Note: Some input files use or override a deprecated API. tO see Only d S|ng|e

Note: Recompile with -Xlint:deprecation for details. f ||

> Task :domain:test
OpenJDK 64-Bit Server VM warning: Sharing is only supported for boot loader classes becau
e bootstrap classpath has been appended

> Task :solution:test

TestGameEventRecording = shouldNotAllowActionsOnBehalfOfOpponent()
java.lang.AssertionError at TestGameEventRecording.java:174

/v Conclusion

AARHUS UNIVERSITET

« For the domain code (game code), it seems that
particular Status value does not provide any value
beyond what NOT OWNER does.

— It can probably be removed, the ‘blast area’ is small
— Removed in the code base for the E24 instance

« As Ul operations are manually tested, | do still need to
verify that aspects
— |Issue: Game domain works, but the Ul fails...

/v

AARHUS UNIVERSITET

lteration 2

Betatown Rate Policy

eV Triangulation at Algorithm Level

AARHUS UNIVERSITET

» Introducing the real BetaTown rate
policy is a nice example of using
Tr i an g u | atl 0 n public class ProgressiveRateStrategy implements RateStrategy {

public int calculateTime(int amount)} {

- int 1_1".“ - —
- Itera’[lon 2: if (amount >= 150+200) { // from 2nd houfASICIICIED
amount -= 350;
time = 120 /*min*/ + amount / 5;

« Add test case for first hour => production T =T e = o0 (7 o T T T
amount -= 150;
COde time = 60 /*min*/ + amount * 3 / 10; W
T el 1 oD Lo ITC nour

public class ProgressiveRateStrategy implements RateStrategy { time = amount * 2 / 5;:

public int calculateTime(int amount) { 1

return amount * 2 / 5; return time;

} }

+ }

— |teration 3: Add test case for second hour

« Add just enough complexity to the rate
policy algorithm

— lteration 4. Add test case for third (and
following) hour

» Add just enough more complexity

CS @ AU Henrik Baerbak Christensen 26

e Uhum - the Details?

AARHUS UNIVERSITET

% Flexible, Reliable Software — Mozilla Firefox

| Flexible, Reliable Software x = +

O 8 https://www.baerbak.com

Henrik Baerbak Christensen
PhD. Associate Professor, University of Aarhus, Denmark

Flexible, Reliable Software

Using Patterns and Agile Development

CRC Press, Taylor and Francis, May 2010.

Description and Sample Chaptey s shamlat Lo
Table of contents r Source code (2nd Edition/Prerelease)
Foreword by Prof. Kolling Feririirere—y
Preface MiniDraw (Open source at Bitbucket)
Erratum Teacher's resources
Additional material and exercises Missing insets b ok cha pter
Contact author Contributions (Thanks!) b I exa F'I"IDI.ES
FRS 2nd Edition / Year 2021-2022 Update b | exercise
The book Flexible, Reliable Software celebrated its tenth anniversary in b
2020. Looking back, I am happy to say that all core contents of the book is b libra ry
D . project
b o\ solution

CS@AU Henrik Baerbak Christensen 27

/v

AARHUS UNIVERSITET

lteration 5

Unit and Integration Testing

Y Unit Testing

AARHUS UNIVERSITET

| can actually test the new rate policy without using the
pay station at all !

Fragment: chapter/refactor/iteration-5/src/test/java/paystation/domain/ TestProgressiveRate.java

public class TestProgressiveRate |
RateStrategy rs;

@BeforeEach public void setUp() |{
=) s = new ProgressiveRateStrategy ();

|

Fragment: chapter;’ refactor/iteration-5/src/test/java/paystation/domain/ TestProgressiveRate.java

@Test public void shouldGivel20MinFor350cent () {
// Two hours: $1.5+2.0
assertThat(rs. calculateTime (350), is(2*x60) /* minutes */);

|

CS @ AU Henrik Baerbak Christensen 29

/v Advantages

AARHUS UNIVERSITET

* The unit testing of the progressive rate strategy is much
simpler than the corresponding test case, using the
strategy integrated into the pay station.

Fragment: chapter/refactor/iteration-3/src/test/java/paystation/domain/ TestProgressiveRate.java

/** Test two hours parking =/

@Test public void shouldDisplay120MinFor350cent ()

throws IllegalCoinException |

// Two hours: $1.5+2.0 CO
addOneDollar () mpa,-e
addOneDollar () — tO
addOneDollar ()
addHalfDollar (

r
r
r
);

assertThat (ps.readDisplay (), is(2 = 60) /*minutes=/);

Fragment: chapter/ refactor/iteration-5/src/test/java/paystation/domain/ TestProgressiveRate. java

@Test public void shouldGivel20MinFor350cent () {

// Two hours: $1.5+2.0
assertThat(rs.calculateTime (350), is(2=60) /* minutes =/);

}

CS @ AU Henrik Baerbak Christensen 30

/v Testing Types

AARHUS UNIVERSITET

 Now

— | test the ProgressiveRateStrategy in isolation of the pay station
(Unit testing)

— The pay station is tested integrated with the LinearRateStrategy
(Integration testing)

« Thus the two rate strategies are tested by two
approaches
— In isolation (unit)
— As part of another unit (integration)
 And
— The actual Betatown pay station is never tested!

/v Visually

AARHUS UNIVERSITET

AlphaTown - JUnit PayStation

LinearRateStrategy

PayStation

BetaTown - JUnit

ProgressivRate
Strategy

Fragment: chapter/refactor/iteration-5/src/test/java/paystation/domain/ TestProgressiveRate.java

public class TestProgressiveRate |
RateStrategy rs;

@BeforeEach public void setUp() {
rs = new ProgressiveRateStrategy ();

1

CS@AU Henrik Beerbak Christensen 32

/v Definitions

AARHUS UNIVERSITET

« Experience tells us that testing the parts does not mean
that the whole Is tested!

— Often defects are caused by interactions between units or wrong
configuration of units!
Definition: Unit test

Unit testing is the process of executing a software unit in isolation in
order to find defects in the unit itself.

Algorithms —
Business Logic

Definition: Integration test

Integration testing is the process of executing a software unit in collabo- CO_I Clleleidely betwgen
ration with other units in order to find defects in their interactions. un ItS/ modu |ES/ services

Definition: System test

System testing is the process of executing the whole software system in User Expectations
order to find deviations from the specified requirements.

CS @ AU Henrik Baerbak Christensen

eV Exercise

AARHUS UNIVERSITET
« Tricky — but

— Give me a concrete example where having tested all the units in
Isolation does not guaranty that the system works correctly!

— Example: The Mars Climate Orbiter...

/v Inte%ration Testing the Pay Station

AARHUS UNIVERSI

* | must add a testcase that validate that the AlphaTown
and as well as BetaTown products are correctly

Listing: chapter/refactor /iteration-6 /src/test /java/ paystation/ domain/ TestIntegrationjava

configured!

import org.junit.jupiter.api.*;
import static org.junit.jupiter.api.Assertions.«*;

import static org.hamcrest. MatcherAssert. assertThat;
import static org.hamcrest.Matchers.*;

/+=» Integration testing of the configurations of the pay station.
o
public class TestIntegration {

private PayStation ps;

Beta - JUnit ' .

+ Integration testing for the linear rate configuration
=/

@Test
public void shouldIntegrateLinearRateCorrectly ()

o throws IllegalCoinException |
ProgreSSIVe Rate // Given a AlphaTown paystation / linear rate

ps = new PayStationImpl(new LinearRateStrategy());
// When adding 2%
addOneDollar (); addOneDollar ();

Strategy

// Then the display reads 80 minutes
assertThat (ps.readDisplay (), is(80));
I

« Just a single test that they integrate! =« co s o s

@Test
public void shouldIntegrateProgressiveRateCorrectly ()
throws TIllegalCoinException |

— Not re eatl n all the teStSl // Given a BetaTown pay station / progressive rate
" ps = new PayStationlmpl(new ProgressiveRateStrategy ());
// When adding 2$
addOneDollar (); addOneDollar();

// Then the display reads 75 minutes
assertThat(ps.readDisplay (), is(75));
b

private void addOneDollar() throws IllegalCoinException {

ps-addPayment(25); ps.addPayment(25);
CS @ AU Henrik Beerbak Christensen }

ps-addPayment(25); ps.addPayment(25);
¥

/v Important Note!

AARHUS UNIVERSITET
 Integration testing is not system testing!

* You typically integration test that A works with B, while
using doubles for C, D, and E units!
— We will return to what ‘doubles’ are next week ©

e System testing is testing the full system: A working with
real B, real C, real D, and real E units.
— Focus: Does system do what it promised to do?

/v More advanced integration testing

AARHUS UNIVERSITET
« The pay station case’s integration is pretty simple as it is
all a single process application.

« SkyCave case

— Automated integration tests use special libraries to start a
MongoDB database and a external REST server, in order to test
the main server’s proper interaction with these.

— Afterwards the database + REST server is stopped and wiped for
contents

— Integration tests are often slow to execute
« Which is why they are often performed by a special build server...

/v And system testing

AARHUS UNIVERSITET

 Karibu case

— (Manual) system test requires
« Two servers running clustered RabbitMQ
» Two servers running Karibu Daemons
» Three servers running replica set Mongo databases

— Test cases include

« Shutting down servers and validate data keeps flowing and
reviewing log messages for proper handling of shut down events...

/v

AARHUS UNIVERSITET

lteration 6: Unit Testing
Pay Station

/v Separate Testing

AARHUS UNIVERSITET

« | can actually also apply Evident Test to the testing of the
pay station by introducing a very simple rate policy

Fragment: chapter/refactor/iteration-6/src/test/java/paystation/domain/TestPayStation.java

@BeforeEach
public void setUp() | Lambda
// Given a PayStation whose rate strategy is that TGN
// one_ cent buys one minute parking time P
ps g new PayStationImpl(coinValue —> coinValue); for:
} one cent =
Fragment: chapter/refactor/iteration-6/src/test/java/paystation/domain/ TestPayStation.java one m | nute
/** Test acceptance of all legal coins */

@Test
public void shouldAcceptLegalCoins() throws IllegalCoinException |{
// Given a paystation
// When I enter 5, 10, and 25 cents
ps.addPayment (5);
ps.addPayment (10);
ps.addPayment (25);
// Then the display should read 40
assertThat (ps. readDisplay (), is(5+10+25));

CS @ AU Henrik Baerbak Christensen 40

/v Visually

AARHUS UNIVERSITET
. , PayStation
PaySt. - JUnit ﬁ _ One20neRate
Strategy

LinearRateStrategy

 Now unit testing PayStation

— As the RateStrategy is ‘doubled’ by a simpler implementation

« Simpler => No defects there, so any defect must stem from coding
errors in the PayStation...

CS@AU Henrik Beerbak Christensen 41

/v Resulting test cases

AARHUS UNIVERSITET

« Using this rate policy makes reading pay station test
cases much easier!

@llest
puhllc void unltTe5tPavStatlnnU51ngUnezﬂneﬂtPategv[] throws IllegalCoinException {

DS = nNew StandanPavStatlnn[value -> value);

// When I enter 5, 18 and 25 cents
ps.addPavment[oinValue: 5);
ps.addPayment(coinvalue: 1@);
ps. addPavment[[EE]]
ien it i1s EVIDENT that display shows (5+18+25)=48 minutes
assertThﬂt[ps Peadnlsplav[], is(value: 5+168+25));
} —_—

CS @ AU Henrik Baerbak Christensen 42

/v

AARHUS UNIVERSITET

Outlook

Continuous Delivery and Deployment

/v Agile on the Minute Scale

AARHUS UNIVERSITET

« Many software houses release and deploy software on
the minute and hour scale
— Google, netflix, uber, amazon, microsoft, ...

« How
— Comprehensive unit test suites
— Comprehensive integration tests

— Automated ‘build pipelines’ running on dedicated build servers
* The pipeline will
— Run all tests, package the system into a virtual machine and release it
— Potentially deploy the release and put it into production

- Example: Bitbucket Pipelines

AARHUS UNIVERSITET

Pipeline Status Started Duration
yn E“ leec.i t::ug in Dockerfile- mu_ltﬁlst_age (]ac}oco .gradle has been remowved.) © Successful 21 hours ago 3 min 25 sec
"‘_} Henrik Baerbak Christensen v 73b0fb5 E:f f20-solution
Merged d f st ed
242 E\ &re ev (use of streams increased) O Failed 21 hours ago 3 min 12 sec

" #» Henrk Barbak Christensen § e8beb2s 19 f20-solution

s E“ Merged Dev with the jacoco all report thingy. ,)
A & ook Borbok Chrisiensen $ c67200¢ [f20-solulion 0 Failed 2 days ago 3 min 36 sec

ﬂ

s E"‘ Removed docker push of the version tagged caveservice © successful 7 days ago 5 min 41 sec

UJ

zerbak Christensen ¢ 7a80ead I# f20-solution
I# f20-solution
© 3 min 25 sec 21 hours ago f;

Pipeline Q

o Unit Test 51 test

CavaServce Image Deploy... 385

Service tests 25 tests passed » 1m 255

0O—O0—0—

SkyCave Image Deploymert 425

CS@AU Henrik Baerbak Christe

\ 4
AARHUS UNIVERSITET

AU GitLab supports it

* You can enable it by adding a special ‘yml’ file...

P paystation-e21 Henrik Barbak Christensen

All 10 Pending 0
1T Project overview ¢

[Repository Filter pipelines
[Issues 0

Status Pipeline

11 Merge Requests 0

#25649

2 i
Pipelines

#25648

Jobs
Schedules

#25646

& Operations

B Packages & Registries
® Failed #25645

| Analytics

CS@AU

paystation-e21

Pipelines

Running 0 Finished 10 Branches Tags

Triggerer

[

Commit

Pmaster <-38b188e9

§ Merge branch "iteration...

Fiteration3 -o- 0e4b431c

§ Snapshot: All tests pass, ...

Viteration3 -o-c3144ch4

§ Broken tests still. Intro L...

Piteration3 < 78b670ab

§ BROKEN TEST. Introduc...

Stages

©®

©®

Henrik Baerbak Christensen

Run Pipeline Clear Runner Caches Cl Link

& 00:00:46 .
7 minutes age =
& 00:00:45 .
34 minutes ago =
S. 00:00:32 & - C
38 minutes ago
S. 00:00:36 & - C
39 minutes ago
46

/v

AARHUS UNIVERSITET

Conclusion

VeV Advice

AARHUS UNIVERSITET

« Do not code In anticipation of need, code when need
arise...

e Automatic tests allow you to react when need arise
— because you dare refactor your current architecture...

/v Refactoring

AARHUS UNIVERSITET
« When ’architecture refactoring’ need arise then

* A) Use the old functional tests to refactor the architecture
without adding new or changing existing behavior

* B) When everything Is green again then proceed to
Introduce new/modified behavior

 C) Review again to see if there is any dead code lying
around or other refactorings to do.

eV Discussion

AARHUS UNIVERSITET

» These refactorings shown here are very local, so the
‘architecture decisions’ are also local.

« However sometimes you need to make larger architectural
changes that invalidate the test cases ®
— Changing API or the way units are used
— Ex: Changing persistence from file to RDB based

« What to do In this case?

— Define a path (even a long one) of small tasks that keep tests
running! Even if it means making code that later must be removed

